Search results for "Electromagnetic model"

showing 6 items of 6 documents

A Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle

2016

In this article we present an approach to the description of Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle. Preliminarily, an analytical model which includes an electromagnetic model and a thermal model is presented. Successively, in order to move beyond the analytical model, a 3-D MHD modeling tool and a Runge Kutta method based solver are presented and they are used to investigate an alternative MHD solutions. Some numerical analysis are given

010302 applied physicsEngineeringbusiness.industryNumerical analysis05 social sciencesControl engineeringOcean EngineeringSolverPropulsionSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciOceanography01 natural sciencesRunge–Kutta methodsMagnetohydrodinamic Propulsion SystemSettore ING-INF/04 - AutomaticaPhysics::Space Physics0502 economics and business0103 physical sciencesMagnetohydrodynamic driveElectromagnetic modelMagnetohydrodynamicsThermal modelbusinessInstrumentation050203 business & management
researchProduct

Electromagnetic and Thermal Modelling for Calculating Ageing Rate of Distribution Transformers

2018

Prediction of the lifetime for transformers is very important for maintenance and asset management. Finite element analysis was performed on a 5 MVA distribution transformers with aluminium foil-type windings and voltage rating 6600 V/23000 V. Electromagnetic modelling is implemented on the full three-phase transformer to calculate distributed losses, taking the skin effect into account. To reduce the computational burden, the distributed losses in one phase are used to analyse temperature rise in one phase of the transformer. The temperature rise results were used to determine the ageing rate of the transformer. Further, the influence of ambient temperature and cooling on the temperature r…

010302 applied physicsMaterials science020209 energyNuclear engineeringchemistry.chemical_element02 engineering and technologyDistribution transformer01 natural sciencesFinite element methodElectromagnetic modellinglaw.inventionchemistryElectromagnetic coilAluminiumlaw0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringSkin effectTransformer2018 21st International Conference on Electrical Machines and Systems (ICEMS)
researchProduct

Influence of the channel design on the heat and mass exchange of induction channel furnace

2011

PurposeThe purpose of this paper is to present in‐depth numerical modelling of heat and mass exchange in industrial induction channel furnace (ICF).Design/methodology/approachThe turbulent heat and mass exchange in the melt is calculated using a three‐dimensional (3D) electromagnetic model and a 3D transient large eddy simulation method. The simulation model has been verified by flow velocity and temperature measurements, which were carried out using an industrial sized channel inductor operating with Wood's metal as a low temperature model melt.FindingsThe ICF is well‐established for melting, holding and casting in the metallurgical industry. But there are still open questions regarding th…

EngineeringElectromagnetic modelsLarge Eddy simulation methodsChannel geometryHeat and mass transferDewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und MaschinenbauMechanical engineeringInductorTemperature measurementModellingMetallurgical industryChannel designExperimentWood's metalMass transferLow temperaturesIndustryMass transferWood's metalElectrical and Electronic Engineeringddc:510Low frequency oscillationsMass exchangeTemperature measurementbusiness.industryApplied MathematicsThree dimensionalFurnaceMechanicsDesign/methodology/approachDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikComputer Science ApplicationsComputational Theory and MathematicsFlow velocityThree-dimensional (3D)Casting (metalworking)Numerical modellingMetallurgySimulation modelddc:620businessSimulationCommunication channelLarge eddy simulationNumerical analysis
researchProduct

Transient Electrical Behaviour of the TF Superconducting Coils of Divertor Tokamak Test Facility During a Fast Discharge

2022

The paper is focused on the electromagnetic analysis of the Toroidal Field (TF) superconducting coils of the Divertor Tokamak Test facility (DTT) when electrical transients occur in the TF coils system: for example, during the operations of the Fast Discharge Units (FDUs) and considering also, the simultaneous occurrence of a fault condition. During the FDU intervention, a transient voltage excitation lasting few microseconds occurs at the TF coil terminals and it electrically stresses the insulations of TF coils itsef. To investigate the voltage distribution across, inside and between different Double Pancakes (DPs) of each TF coil, a lumped parameters circuital model has been developed an…

Fast DischargeCircuit faultsFDUCondensed Matter PhysicsGround fault conditionsCentral Solenoid Model Coil (CSMC)Electronic Optical and Magnetic MaterialsSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaTransient analysisSettore ING-IND/31 - ElettrotecnicaInsulationIntegrated circuit modelingDischarges (electric)Toroidal Field Model Coil (TFMC)Superconducting magnetsElectrical and Electronic EngineeringVoltage distributionInductanceDTTElectromagnetic modelling
researchProduct

Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models

2019

Abstract We extend the correspondence between metric-affine Ricci-Based Gravity the- ories and General Relativity (GR) to the case in which the matter sector is represented by linear and nonlinear electromagnetic fields. This complements previous studies focused on fluids and scalar fields. We establish the general algorithm that relates the matter fields in the GR and RBG frames and consider some applications. In particular, we find that the so-called Eddington-inspired Born-Infeld gravity theory coupled to Maxwell electromag- netism is in direct correspondence with GR coupled to Born-Infeld electromagnetism. We comment on the potential phenomenological implications of this relation.

High Energy Physics - TheoryElectromagnetic fieldPhysicsNuclear and High Energy PhysicsGravity (chemistry)010308 nuclear & particles physicsGeneral relativityScalar (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyNonlinear systemTheoretical physicsHigh Energy Physics - Theory (hep-th)Electromagnetism0103 physical sciencesBeyond Standard Modellcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityElectromagnetic model010306 general physicsClassical Theories of GravityGeneral algorithmJournal of High Energy Physics
researchProduct

Feasibility, limitations and potentiality of UHF-RFID passive implants

2012

Implanted RFID may play an important role in the personal Healthcare of next future. Antenna embedded into prosthesis or into other implanted medical devices could permit to monitor physiological and pathological processes, providing a natural interconnection to remote services. The big technical challenge is to establish a stable RFID link with the interior of the human body in spite of the high electromagnetic losses of the tissues. By using parametric electromagnetic models and some early result, it is here investigated the potentiality and limitation of the UHF implants with special attention to the body district, the overall mass, and the size of the antennas.

InterconnectionEngineeringUltra high frequencybusiness.industryElectronic engineeringElectromagnetic modelAntenna (radio)businessImplantable antennas rfid sensorUhf antennas
researchProduct